Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors

نویسندگان

  • Anna Peled
  • Alexander Pevzner
  • Hagit Peretz Soroka
  • Fernando Patolsky
چکیده

BACKGROUND The detection of biological and chemical species is of key importance to numerous areas of medical and life sciences. Therefore, a great interest exists in developing new, rapid, miniature, biocompatible and highly sensitive sensors, capable to operate under physiological conditions and displaying long-term stabilities (e.g. in-body implantable sensors). Silicon nanostructures, nanowires and nanotubes, have been extensively explored as building blocks for the creation of improved electrical biosensing devices, by virtue of their remarkably high surface-to-volume ratios, and have shown exceptional sensitivity for the real time label-free detection of molecular species adsorbed on their surfaces, down to the sensitivity of single molecules.Yet, till this date, almost no rigorous studies have been performed on the temporal morphological stability of these nanostructures, and their resulting electrical devices, under physiological conditions (e.g. serum, blood), as well as on the chemical stability of the molecular recognition over-layers covering these structures. RESULTS Here, we present systematic time-resolved results on the morphological stability of bare Si nanowire building blocks, as well on the chemical stability of siloxane-based molecular over-layers, under physiological conditions. Furthermore, in order to overcome the observed short-term morpho-chemical instabilities, we present on the chemical passivation of the Si nanostructures by thin metal oxide nanoshells, in the range of 3-10 nm. The thickness of the metal oxide layer influences on the resulting electrical sensitivity of the fabricated FETs (field effect transistors), with an optimum thickness of 3-4 nm. CONCLUSIONS The core-shell structures display remarkable long-term morphological stability, preventing both, the chemical hydrolytic dissolution of the silicon under-structure and the concomitant loss of the siloxane-based chemical over-layers, for periods of at least several months. Electrical devices constructed from these nanostructures display excellent electrical characteristics and detection sensitivities, with exceptionally high morphological and functional stabilities. These results pave the road for the creation of long-term implantable biosensing devices in general, and nanodevices in particular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological basis of drought tolerance in potato grown under long-term water deficiency

Coping with water shortages without compromising tuber yield is a majorchallenge for potato (Solanum tuberosum L.) production in northern China. In thisstudy, we used three potato cultivars with different sensitivities to drought toevaluate the effect of long-term drought stress on morphological and physiologicalcharacteristics under field conditions during three growing seasons (2009-2011).Our...

متن کامل

Nano-Bioelectronics.

Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensiti...

متن کامل

Photothermal stability of biologically and chemically synthesized gold nanoprisms

We report here the influence of the irradiation with femtosecond laser pulses on the gold nanoprisms synthesized using biological and chemical methods. For the bio-mediated growth, we used plant extract as a source of reducing, structure-directing, and stabilizing agents, while for the chemical method, we applied three-step protocol, involving chemicals commonly used in the synthesis of nanostr...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory

High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014